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ABSTRACT
Candidate generation task requires that candidates related to user
interests need to be extracted in realtime. Previous works usually
transform a user’s behavior sequence to a unified embedding, which
can not reflect the user’s multiple interests. Some recent works like
Comirec [4] and Octopus [21] use multi-channel structures to cap-
ture users’ diverse interests. They cluster users’ historical behaviors
into several groups, claiming that one group represents one interest.
However, these methods have some limitations. First, an item may
correspond to multiple interests of users, thereby simply allocat-
ing it to just one interest group will make the modeling of users’
interests coarse-grained and inaccurate. Second, explaining user
interests at the level of items is rather vague and not convincing.

In this paper, we propose a Knowledge EnhancedMulti-Interest
Network: KEMI, which exploits knowledge graphs to help learn
users’ diverse interest representations via heterogeneous graph neu-
ral networks (HGNNs)[26, 39] and a novel dual memory network.
Specifically, we use HGNNs to capture the semantic representation
of knowledge entities and a novel dual memory network to learn
a user’s diverse interests from his behavior sequence. Through
memory slots of the user memory network and the item memory
network, we can learn multiple interests for each user and each
item. Meanwhile, by binding the entities to the channels of memory
networks, we enable it to be explained from the perspective of the
knowledge graph, which enhances the interpretability and under-
standing of user interests. We conduct extensive experiments on
two industrial and publicly available datasets. Experimental results
demonstrate that our model achieves significant improvements
over state-of-the-art baseline models.
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1 INTRODUCTION
Large-scale commercial recommender systems are usually divided
into two stages: candidate generation stage and precise ranking
stage. Candidate generation stage is responsible for retrieving thou-
sands of candidate items matching to user interests in real-time.
The precise ranking stage is responsible for accurately predicting
the probability that users are interested in candidate items. In this
work, we mainly focus on the candidate generation stage.

The mainstream candidate generation methods are based on
similarity search (e.g., k-nearest neighbors algorithm), where users
and items are represented in the same space and the relatedness of
users and items is reflected by their representational similarity. In
the early days, people used to exploit raw features intensively; e.g.,
users could be represented by a set of keywords and tags, where
items associated with the same keywords and tags were regarded as
proper candidates. Due to the coarse-granularity of raw features, it
is hard to measure the relevance of a user and an item precisely. In
recent years, increasing attention has been paid to representations
learned by deep neural networks. Typical methods include YouTube
DNN [6], DSSM [13] and CDSSM [27] in which users and items are
encoded via deep neural networks and their relevance is reflected
by their closeness in the common latent space. These methods
assign each user and item with one single vector, which is hard to
represent a user comprehensively when his interest is diversified.
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As a result, some items that users are interested in will be missed
during this stage.

Some recent "multi-channel structures"models seem to be promis-
ing solutions towards the above problem, which are more capable
of representing users’ diverse interests, e.g. MIND [17], Comirec
[4] and Octopus [21]. With the deployment of multiple channels,
a user can be modeled from different perspectives and his diverse
interests can be jointly captured with different representations.
However, these methods cluster users’ behavior sequences into dif-
ferent groups to represent different interests, ignoring that an item
may contain multiple fine-grained interests. As shown in Figure 1,
the items below are from a real world news feed application, and
all these news show diverse interest characteristics. Take item1 as
an example, this is a news about a famous tennis player: Djokovic
investing in a Covid-19 treatment company. This news involves at
least three kinds of interests: sports, finance, and health. Simply
allocating it to one interest channel will make the modeling of user
interests inaccurate.

financesports health technology

Interests

Items

Tesla raises Full Self 
Driving software price
to US$12000 in US

DeepMind’s AI makes 
gigantic leap in solving 
protein structures

Novak Djokovic holds 80%
stock in company 
developing treatment for 
Covid

Knowledge
Graph

Novak 
Djokovic

Covid

protein

stock

Tesla

Full Self 
Driving 

DeepMind
AI

Item 1 Item 2 Item 3

Figure 1: An example of knowledge graphs helping to extract
the fine-grained interests of items, and further model users’
multiple fine-grained interests. Each item that a user has
interacted with is associated with different entities. Through
the knowledge graph, different entities can learn different
types of interests, thereby helping to understand themultiple
fine-grained interests of the user.

To deal with the above "One item may contain multiple fine-
grained interests" issue, we introduce knowledge graphs to enhance
the modeling of multi-interests of users and items. As elaborately
constructed semantic networks, knowledge graphs contain a large
number of facts and relations. Incorporating knowledge graphs as
side information has been proven to be promising in improving both
accuracy and explainability for recommender systems [11, 33, 41].
By exploring the interlinks within a knowledge graph, we can get
more comprehensive information about the item from the neighbor
entities, which can help us understand the diverse interests of items
and further model the fine-grained interests of users. Meanwhile,
we can also link interests and knowledge entities to better explain

the diverse interests of users from the perspective of the knowledge
graph.

In this paper, a novel multi-interest representation model, KEMI,
is proposed. We first apply HGNNs [39] to learn the rich semantic
representations of items and their associated entities. To capture
users’ diverse interests representations from users’ historical be-
havior sequences, we propose a novel dual memory network, which
includes an interest memory network and a user memory network.
The interest memory network learns the interest distribution from
item level and knowledge entity level, aiming to obtain the overall
and fine-grained interest information, while the user memory net-
work learns the user’s personal sequential representations. We get
the user’s multiple interest representations through the dual mem-
ory network. To better learn the interests distributions of items,
we add a constrained interest loss. The user representation vectors
are computed only once and can be used in the matching stage for
retrieving relevant items from billion-scale items.

To summarize, the following contributions are made in this work.
• Wepropose KEMI, a novel knowledge enhancedmulti-interest
network, which comprehensively captures users’ diverse in-
terests with the help of knowledge graphs for candidate
generation task in recommender systems.

• On top of the proposed framework, we propose to useHGNNs
to learn the unified representations of items and knowledge
entities with multiple types of relations, then we feed the
items and knowledge entities to a novel dual memory net-
work structure to learn the overall and fine-grained interests
representations from users’ behavior sequences. And we de-
sign a constrained interest loss to help better learn users’
interests distributions.

• Extensive experimental studies are carried out with both in-
dustrial and publicly available datasets, where KEMI achieves
substantial improvements over state-of-the-art baselinemeth-
ods, and in the meanwhile, our method can give a good expla-
nation for each interest channel with the help of knowledge
graphs.

2 RELATEDWORK
In this section, we introduce the related literature about deep rec-
ommendation system, generation of recommendation candidates,
knowledge graph recommendation and memory networks.

Deep Recommendation System. Recently, deep learning has
been revolutionizing recommender systems and achieving bet-
ter performance in many recommendation scenarios such as e-
commerce, online advertisement, and personalized content feed
[13, 18, 22]. Generally speaking, the contribution of deep learning
techniques to recommender systems has two aspects. First, com-
pact and discriminative features can be automatically learned from
raw data thanks to the superior representational capabilities of
deep neural networks, e.g., high-level language models for text
representation learning [19, 29], as well as through GNN and graph
embeddings [35, 38]. Second, through the complex network struc-
ture, the complex behavior patterns of users can be modeled more
accurately. For example, [7, 20, 24] propose to use a recurrent neu-
ral network to effectively represent the user’s temporal interest;
[24] uses memory networks to better capture the user’s different
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interests. [42, 43] make the user representation vary over different
items with attention mechanisms to capture the diversity of user
interests. It should be noted that most of today’s deep recommenda-
tion algorithms are mainly used for the "ranking step", that is, the
final selection of recommendation items from a small candidate set;
by contrast, relatively limited progress has been made in candidate
generation.

Generation of Recommendation Candidates. Candidate gen-
eration is the first step of recommender systems. Unlike the ranking
stage, it requires both precision and efficiency: suitable candidates
must be selected in realtime from a large number of items. As a
result, mainstream algorithms shift the candidate generation prob-
lem to the similarity search problem. In addition to those well-
established search paradigms, such as inverted-index [16], KNN
search [31], Maximum Inner Product Search (MIPS) [15], candidates
can be generated within a short time. Mainstream candidate gener-
ation algorithms have two common prerequisites. First, users and
items must follow the same representation, e.g., keywords from a
common set, or vectors in the same latent space. Second, the seman-
tic relationship of users and items must be manifested through their
representational similarity; for example, the co-occurrence of key-
words, or the distance between two vectors. Obviously, the quality
of a candidate is largely influenced by the ability to represent. Early
on, people would turn to directly comparing raw features[1, 40],
such as similarity in raw text. Due to the coarse-grained nature of
raw features, it is difficult to accurately identify items of interest to
users. In recent years, representations learned by deep neural net-
works have received increasing attention, such as [8, 44]. However,
traditional representations generate a vector for each user, which
is difficult to capture the different interests of users. Although ex-
isting multi-channel structures [5, 22]will generate different user
representations, it is difficult to capture fine-grained user interests
by only modeling isolated items that have multiple dimensions of
interests, and these methods lack convincing explanations at the
item level.

Knowledge Graph Recommendation. Knowledge graphs have
been widely used to improve recommendation accuracy. [28] in-
troduces an end-to-end framework, named RippleNet, which simu-
lates the propagation of user preferences over the set of knowledge
entities and alleviates the sparsity and cold start problem in recom-
mender systems. [3] considers the joint learning of recommendation
and knowledge graph completion. With the emerging techniques of
graph neural networks (GNN), some researchers devise GNN-based
models to utilize knowledge graphs for recommendation systems
[30, 32]. [12] proposes to incorporate knowledge information to en-
hance the semantic representation of Key-Value Memory Network
for sequence recommendation. Another major advantage of knowl-
edge graphs is their ability to endow recommender systems with
explainability. Connectivity between two nodes with a multi-hop
path over the graph can serve as knowledge-aware reasoning be-
cause it reveals the semantic relationship between two nodes. [33]
searches all potential paths connecting the user and the item, then
adopts an LSTM on paths to capture the sequential dependencies
of nodes for user preference inference. The reasoning is conducted
by selecting the paths with the highest preference scores. To avoid
enumerating all possible paths, [36] proposes a reinforced method

Notation Description
𝑢 a user
𝑖 an item
U the set of users
I the set of items

I𝑝𝑜𝑜𝑙 the item pool of candidate items
𝑒 a knowledge entity
G the knowledge graph
𝑚 the number of interests
𝑀𝐼 the interest memory network
𝑀𝑈 the user memory network
𝑑 the dimension of embeddings

Table 1: Notations

called Policy-Guided Path Reasoning (PGPR), with three key com-
ponents including a soft reward strategy, a user-conditional action
pruning strategy, and a multi-hop scoring approach. In this work,
we want to use knowledge graphs to represent users’ diverse inter-
ests in a fine-grained way to improve recommendation accuracy
and meanwhile gain better explainability.

Memory Network. The Memory Network extends existing neu-
ral network models with extra memory components, which could
store informative facts from historical data[10] and better capture
user’s diverse interests. Memories will be read and updated when
they are used to provide models with extra knowledge. Due to
the advantages of memory networks in modeling long-sequence
behaviors[5, 24] and diverse interests[23, 44] of users, they are
widely used in recommendation systems to improve user model-
ing. [5] proposes to leverage external memory networks integrated
with collaborative filtering for sequential recommendation. [24]
proposes a memory-based MIMN model capturing long-term user
interests from fairly long sequential user behavior data. [44] com-
bines external memory and neural attention mechanism to capture
fine-grained user preference across various interaction space. Due
to the advantages of memory network in both modeling users’ se-
quential behavior and users’ diverse interests, we propose a novel
dual memory network to better learn multi-interest representations
from users’ historical behavior sequences.

3 METHODS
3.1 Problem Formulation
Assume we have a set of users U and a set of items I. For each
user 𝑢 ∈ U, we have a sequence of user historical behaviors 𝐻𝑢 =

{𝑖𝑢1 , 𝑖
𝑢
2 , ..., 𝑖

𝑢
𝑇
}, sorted by time of the occurrence. Each item 𝑖 ∈ I

is associated with a set of knowledge entities 𝐸𝑖 = {𝑒𝑖1, 𝑒
𝑖
2, ..., 𝑒

𝑖
𝑘
}.

The objective of the candidate generation stage for industrial RS is
to retrieve top-N candidate items from the billion-scale item pool
I𝑝𝑜𝑜𝑙 for each user 𝑢 ∈ U in real time, promising that each item is
relevant to interests of the user. The core task of our KEMI model
is to learn a function for mapping user historical behaviors into
multiple user representations, which can be formulated as:

V𝑢 = 𝑓𝑢𝑠𝑒𝑟 (𝐻𝑢 ) (1)
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Figure 2: An overview of the proposed KEMI model. The input of our model is a user behavior sequence, which contains
a list of items. The items and their associated knowledge sub-graphs are fed into the heterogeneous graph representation
learning module. Items and their associated entities are transformed to fused representations, with which the user’s overall
and fine-grained interest distribution and the user’s behavior sequence information are respectively learned by a dual memory
network. Finally, the user’s multi-interest representation can be obtained.

where V𝑢 = {v𝑢1 , v
𝑢
2 , ..., v

𝑢
𝑚} ∈ R𝑚×𝑑 , 𝑑 the dimensionality, 𝑚

the number of user interest representation vectors. Notations are
summarized in Table 1.

3.2 Graph Representation Learning
Since knowledge graphs have different types of features and various
types of relations and items and knowledge entities may also have
different types of features. Inspired by HGNNs [26, 39] and JKNet
[37], we leverage heterogeneous graph neural networks and JKNet
to learn unified representations of item and entities. The whole
framework can be formalized as:

h𝑣 = 𝐽𝐾 (h0𝑣, ...,h𝑛𝑣 ) (2)

where h𝑣 is the final representation for 𝑣 (an item or an entity), h0𝑣
means 𝑣 ’s initial node feature. h𝑙+1𝑣 (0 < 𝑙 + 1 <= 𝑛) is the hidden
state of 𝑣 in the (𝑙 + 1)-th layer, which can be combined by the 𝑙-th
layer representations of v and its neighbors:

h𝑙+1𝑣 = 𝑈𝑙 (h𝑙𝑣,m𝑙+1
𝑣 ) (3)

where 𝑈𝑙 is a 𝑙-th layer combining function, andm𝑙+1
𝑣 can be got

by aggregating the messages of 𝑣 ’s neighbors 𝑁𝑣 . We explain the
most important modules in detail.

3.2.1 Encoding Node Heterogeneous Features. We have two kinds
of node features: item content features and entity features. Item
content features come from powerful pre-trained language mod-
els so that it can capture adequate text information, while entity
features are generated by knowledge graph embedding methods to
seize topology information. Specifically, We utilize Sentence-Bert
[25] to generate a fixed-dimension vector for each item, e.g. h0𝐵𝑣
for item 𝑣 . All items and knowledge graphs are then combined and
fed to a TransE [2] model to get fixed-dimension vectors for both
items and entities, , e.g. h0𝑇𝑣 for item 𝑣 . Initial vectors of items and
entities will be different as:
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h0𝑣 =
{

h0𝑇𝑣 𝑣 ∈ 𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠
𝑐𝑜𝑛𝑐𝑎𝑡 (h0𝐵𝑣 ,h0𝑇𝑣 ) 𝑣 ∈ 𝑖𝑡𝑒𝑚𝑠 (4)

3.2.2 Aggregating Heterogeneous Neighbors. Items and Entities
have different initial vector spaces.We transform them into a unified
space utilizing RGCN [26]:

m𝑙+1
𝑣 =

∑︁
𝑟 ∈R

∑︁
𝑗∈N𝑟

𝑖

1
𝑐𝑖,𝑟

W(𝑙 )
𝑟 h(𝑙 )

𝑗
(5)

where N𝑟
𝑖
denotes the set of neighbor indices of node i under

relation 𝑟 ∈ 𝑅. 𝑐𝑖,𝑟 is a problem-specific normalization constant.

3.2.3 Updating Nodes Representations. After we get neighbor rep-
resentations, we can update node features h𝑙+1𝑣 in equation 3 by

h𝑙+1𝑣 = 𝜎

(
m𝑙+1

𝑣 +W𝑙
0h

𝑙
𝑖

)
(6)

where𝑊 𝑙
0 is the 𝑙-th dense layer of self-loop relations, and 𝜎 is a

nonlinear activation function.

3.2.4 Jumping Knowledge. We then apply jumping-knowledge op-
erations (𝐽𝐾 ) to merge representations of different layers (see equa-
tion 2). 𝐽𝐾 can be embodied as concatenation, max-pooling, and so
on. We choose concatenation in our paper.

3.3 Modeling User Interests with Dual Memory
Network

Memory networks have been shown to be effective in modeling
users’ diverse interests [24] and users’ sequential behaviors [12].We
propose a dual memory network to better learn fine-grained user
interests from his/her historical behavior sequence. We propose to
use an interestmemory network𝑀𝐼 to learn the interest distribution
and a user memory network𝑀𝑈 to learn the user’s personal interest
representation from his/her historical behavior sequence.𝑀𝐼 and
𝑀𝑈 have the same number of memory slots, to keep the interests
of the two memory networks consistent. The details of the modules
are as follows:

3.3.1 InterestMemory Network. As the example described in Figure
1, a single item often contains multiple types of interests. Thus we
want to not only learn the overall interests of an item from the item
itself but also the fine-grained interests of it with the help of the
associated knowledge entities.

Our model follows the classic Neural Turing Machine (NTM)
model [9], which captures and stores information from sequential
data with a memory network. In the time step of 𝑡 , parameter of
memory is indicated as 𝑀𝑡 , which consists of 𝑚 memory slots,
representing𝑚 different interests. Two basic operations for NTM
are memory read and memory write, which interact with memory
through a controller. At time step 𝑡 , we have (i𝑡 , {e1𝑡 , e2𝑡 , ...e𝑘𝑡 }),
representing the vector learned above of the item and entities asso-
ciated to it.

Read Interest Distributions: Given a user’s behavior embedding
vector at time step 𝑡 , the controller generates a read key k𝑡 to
address memory. For item embedding vector:

k𝑡𝑖 = i𝑡K (7)

where K is the key matrix in controller, it traverses all memory
slots, generates a weight vector, represents the overall interest
distribution of an item:

w𝑡
𝑙
(𝑖) =

𝑒𝑥𝑝 (𝑓 (k𝑡𝑖 , 𝑀𝑡
𝐼
(𝑙)))∑𝑚

𝑗 𝑒𝑥𝑝 (𝑓 (k
𝑡
𝑖 , 𝑀

𝑡
𝐼
( 𝑗)))

, 𝑓 𝑜𝑟 𝑙 = 1, 2, ...,𝑚 (8)

where,

𝑓 (k𝑡𝑖 , 𝑀
𝑡
𝐼 ( 𝑗)) =

k𝑡𝑇𝑖 𝑀𝑡
𝐼
( 𝑗)

k𝑡𝑖 

 

𝑀𝑡
𝐼
( 𝑗)



 (9)

For the entity embedding vectors, we have similar operations,
generating a weight vector representing the fine-grained interest
distribution of an item:

k𝑡𝑒 = (∑𝑘
𝑗 e

𝑡
𝑗 )K (10)

w𝑡
𝑙
(𝑒) =

𝑒𝑥𝑝 (𝑓 (k𝑡𝑒 , 𝑀𝑡
𝐼
(𝑙)))∑𝑚

𝑗 𝑒𝑥𝑝 (𝑓 (k
𝑡
𝑒 , 𝑀

𝑡
𝐼
( 𝑗)))

, 𝑓 𝑜𝑟 𝑙 = 1, 2, ...,𝑚 (11)

where,

𝑓 (k𝑡𝑒 , 𝑀𝑡
𝐼 ( 𝑗)) =

k𝑡𝑇𝑒 𝑀𝑡
𝐼
( 𝑗)

k𝑡𝑒

 

𝑀𝑡
𝐼
( 𝑗)



 (12)

The interest distribution for item 𝑖𝑡 for user 𝑢 is:

w𝑡
𝑢 = 𝛼 ∗w𝑡 (𝑖) + (1 − 𝛼) ∗w𝑡 (𝑒) (13)

where 𝛼 is the weight factor of overall interest distribution. 𝛼 = 1
means we only use items to model users’ interests and 𝛼 = 0 means
we only use knowledge entities to model users’ interests.

Write Interest Memory Slots: We update the Interest Memory
Slots after the whole user behavior sequence to keep the interests
stable. Two additional keys of add vector a𝑖 and erase vector e𝑖 are
also generated from the controller, which controls the update of
memory.

a𝑖 = (
𝑇∑︁
𝑡=1

i𝑡 +
𝑇∑︁
𝑡=1

𝑘∑︁
𝑗=1

e𝑗𝑡 )A (14)

e𝑖 = (
𝑇∑︁
𝑡=1

i𝑡 +
𝑇∑︁
𝑡=1

𝑘∑︁
𝑗=1

e𝑗𝑡 )E (15)

M𝐼 = (1 − E𝐼 ) ⊙ M𝐼 + A𝐼 (16)
where A is add matrix in controller, E is erase matrix in controller,
E𝐼 = w𝑢 ⊗ e𝑖 , A𝐼 = w𝑢 ⊗ a𝑖 , and ⊙ and ⊗ means dot product and
outer product respectively.

3.3.2 User Memory Network. Memory networks have been shown
to be effective for modeling behavioral sequences due to their mem-
ory capabilities. In this paper, We propose to use a memory network
with the same structure of interest memory network to model the
user’s behavior sequence, in this manner, we can maintain the same
interest information with the interest memory network at each
memory channel, and we can learn the user’s behavior sequence
information at the same time.

Write User Memory Slots: At time step 𝑡 , we update user memory
network as:
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a𝑡𝑢 = (i𝑡 +
𝑘∑︁
𝑗=1

e𝑗𝑡 )A (17)

e𝑡𝑢 = (i𝑡 +
𝑘∑︁
𝑗=1

e𝑗𝑡 )E (18)

M𝑡
𝑈 = (1 − E𝑡𝑈 ) ⊙ M𝑡−1

𝑈 + A𝑡
𝑈 (19)

where E𝑡
𝑈

= w𝑡
𝑢 ⊗ e𝑡𝑢 and A𝑡

𝑈
= w𝑡

𝑢 ⊗ a𝑡𝑢 .

3.3.3 User Interests Representation. After the updating of user
memory network, we learn the user’s behavior sequence infor-
mation from the user memory network, and we can get the user’s
interest distribution from the interest memory network, so we com-
bine the two memory networks to get the user’s multi-interests
representation:

V𝑢 = (
𝑇∑︁
𝑡=1

w𝑡
𝑢 )M𝑇

𝑈 (20)

3.4 Learning
3.4.1 constrained interest loss. Through the interest memory net-
work, we can get the overall interest w𝑡 (𝑖) and the fine-grained
interestw𝑡 (𝑒) of the item at time step 𝑡 . We believe that these two in-
terest distributions should be related. We can learn the fine-grained
interests of the item through the knowledge entities associated
to it, this interest distribution largely enriches the details of the
overall interest, and the overall interest distribution of the item
encoded from the whole text can also monitor the importance of
the fine-grained interests. Therefore, We believe that these two
interest distributions play a complementary role. So we add a con-
strained interest loss to the final loss function to help better learn
the interest distributions:

L𝑖 = 𝐾𝐿(w(𝑖) |w(𝑒)) =
𝑚∑︁
𝑗=1

𝑇∑︁
𝑡=1

𝑤 (𝑖)𝑡𝑗 𝑙𝑜𝑔
𝑤 (𝑖)𝑡

𝑗

𝑤 (𝑒)𝑡
𝑗

(21)

3.4.2 Model training. After computing the interest embeddings
from user behaviors through the dual memory network, we get
multiple user representations, and different user representation is
used to represent different user interest. When training the model,
we don’t require users to be interested in an item at each interest, so
we only need the user representation of the corresponding interest
v𝑘𝑢 to be close to the item representation i𝑘 at interest index 𝑘 . The
distance loss is minimized between the user representation and the
ground-truth item:

L𝑑 = 𝑑𝑖𝑠𝑡 (v𝑘𝑢 , i𝑘 ) (22)
where dist(·) is the predefined distance function, and we use cosine
similarity in our work.

The overall objective function for training KEMI is:

L = L𝑑 + 𝜆1L𝑖 + 𝜆2 ∥Φ∥22 (23)
where ∥Φ∥22 is the regularization term to prevent over-fitting, and
𝜆1, 𝜆2 are control parameters. We obtain the values of 𝜆1 and 𝜆2
through tuning experiments.

Our training process is formalized as Alg. 1

Algorithm 1: Training Procedure of KEMI
Input: user behavior sequence 𝐻𝑢 ; knowledge graph G;
Output: user representation function 𝑓𝑢𝑠𝑒𝑟 ;

1 Randomly initialize all parameters ;
2 while not converge do
3 for each user 𝑢 in mini-batch𝑈𝑖 do
4 for item 𝑖 at time step 𝑡 do
5 Learn unified representations of item and entities:

(i𝑡 , {e1𝑡 , e2𝑡 , ...e𝑘𝑡 }) . ▷ Section 3.2 ;
6 Read interest memory network𝑀𝐼 , get overall and

fine-grained interest distributions: w𝑡 (𝑖 ) and w𝑡 (𝑒 ) .
▷ Section 3.3.1 ;

7 Write User Memory Network𝑀𝑈 . ▷ Section 3.3.2 ;

8 Write Interest Memory Network𝑀𝐼 . ▷ Section 3.3.1;
9 Get 𝑢’s representation V𝑢 . ▷ Section 3.3.3 ;

10 Calculate overall objective function L. ▷ Section 3.4 ;

11 Back-propagate the gradients and update.

3.5 Online Serving
After training, we can get the KEMI network 𝑓𝑢𝑠𝑒𝑟 . At serving
time, users’ behavior sequences are fed into the 𝑓𝑢𝑠𝑒𝑟 function,
producingmultiple representation vectors for each user. Then, these
representation vectors are used to retrieve top-N items in total by an
approximate nearest neighbor approach. These items holding the
highest similarities with user’s representation vectors are retrieved
and constitute the final set of candidate items for the candidate
generation stage of recommender system. Please note that, when a
user has new actions, it will alter his behavior sequence as well as
the corresponding user representation vectors, thus KEMI enables
real-time personalization for the matching stage.

As the size of item pool is far bigger than top-N, it is necessary
to figure out how many neighborhood items to take from each
user representation and how to merge them to get the best top-N
items. A direct strategy is to partition the candidate set equally so
that the same number of candidates are generated from each user
representation. However, it may not optimize the overall quality
of the whole candidates since different user interests could have
distinct importance.

Since the relevance between an item and a user representation is
reflected by their distance, it is quite natural to extend this principle
as ourmatching strategy. Particularly, we first retrieve theN-nearest
neighbors of each user representation v𝑘

𝑖
at interest index 𝑘 . Then,

for each item i𝑘 , we associate it with its distance towards v𝑘
𝑖
. Next,

we merge the neighborhood items of all user representations and
sort them with the ascending order of their associate distances.
Finally, the items with the top-N shortest distances are selected to
be our candidates.

4 EXPERIMENTS
4.1 Experiment Settings
4.1.1 Datasets. We evaluate all comparedmodels on the following
realistic and knowledge-rich datasets:
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Microsoft News Dianping Feed
# . users 1,000,000 100,000
# . items 161,013 915,493

#. interactions 24,155,470 1,518,490
#. associated entities per item 17.2 15.8

#. words per article 639 137

Table 2: Statistics of the two realistic datasets.

Wikidata Private KG
#. entities 3,275,149 2,502,554
#. triples 31,963,632 19,467,000
#. relations 1,091 47

Table 3: Statistics of the knowledge graphs.

Microsoft News: [34] is the largest open-source English news
dataset for public research purpose, constructed from the user click
logs of Microsoft News1. The knowledge graph of this dataset is
Wikidata2.

Dianping Feed: is collected from the online feed service of
Dianping3. Dianping is one of the biggest UGC (User-Generated
Content) websites in China, where users can create and interact
with a large number of contents. We collect 100,000 users’ click
logs of 6 weeks from July 26, 2021 to September 05, 2021 from
Shanghai. We build the dataset in the same manner as the Microsoft
News dataset. The knowledge graph of this dataset is our private
knowledge graph.

The basic statistics of the two datasets and knowledge graphs
are shown in Table 2 and Table 3.

4.1.2 Compared Models.
• Most Popular is a traditional recommendation method that
recommends the most popular items to users.

• Youtube DNN [6] is one of the most successful deep learn-
ingmodels for industrial recommender systems, where users’
historical behaviors are encoded by deep networks and ag-
gregated via mean-pooling.

• MIND [17] is a popular method where multiple channels are
deployed. It designs a multi-interest extractor layer based
on the capsule routing mechanism, which is applicable for
clustering past behaviors and extracting diverse interests.

• Comirec [4] is a recently proposed framework following
MIND to extract diverse interests using dynamic routing and
incorporate a controllable aggregation module to balance
recommendation diversity and accuracy.

• Octopus [21] is a framework modeling multiple user inter-
ests via elastic archive network for candidate generation.

• MIMN [24] a recent representative work for the ranking
stage of recommendation, using memory networks to cap-
ture user interests from long sequential behavior data. We
modified the matching function to adapt to our candidate
generation task.

1https://news.microsoft.com
2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://www.dianping.com/

To make a fair comparison, we use the same Sentence-Bert vec-
tors and TransE vectors to initialize the item embeddings for the
above baseline models.

4.1.3 Evaluation Metrics. We use the following metrics to evaluate
all models’ performance which have been widely used in previous
methods.

• Hit Rate, Hit Rate (HR) measures the percentage that rec-
ommended items contain at least one correct item interacted
by the user in the top-k ranking lists.

𝐻𝑅@𝑁 =
1
|U|

∑︁
𝑢∈U

𝛿 (
��� ˆI𝑢,𝑁 ∩ I𝑢

��� > 0) (24)

where ˆI𝑢,𝑁 denotes the set of top-N recommended items
for 𝑢, and I𝑢 is the set of testing items for user 𝑢, 𝛿 (·) is the
indicator function.

• Recall, we adopt per-user average in this paper.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 =
1
|U|

∑︁
𝑢∈U

��� ˆI𝑢,𝑁 ∩ I𝑢
���

|I𝑢 |
(25)

4.1.4 Hyper-parameter Setup and Reproducibility. The number of
dimensions 𝑑 for embeddings is set to 128. The number of interest
channels for multi-interest models is set to 10 for the dianping
feed dataset and 20 for the microsoft news dataset. We use Adam
optimizer [14] with learning rate lr = 0.002 for optimization, 𝜆1 is
set to 0.1 and 𝜆2 is set to 0.00001 and 𝛼 is set to 0.5. We release the
source code at https://github.com/danyang-liu/KEMI.

4.2 Main Results
Table 4 summarizes the performance of KEMI as well as baselines
on two datasets in terms of HR@N and Recall@N (N = 10, 50, 100).
Our KEMI model outperforms all the baselines in terms of all the
metrics, proving the effectiveness of our model combined with
knowledge graphs for the multi-interest candidate generation task.
We also have some observations:

First, on our dianping feed dataset, the multi-interest models like
Octopus and MIND achieve better results than the single-interest
models like Youtube DNN, using multiple user representation vec-
tors is proved to be an effective way for modeling users’ diverse
interests as well as boosting recommendation accuracy.

Second, for the news dataset, some multi-interest models like
MIND, Comirec are not as effective as the single-interest model in
some metrics, like HR@10 and Recall@10. This may be caused by
the unreasonable distribution of items in different interest channels
when they generate candidates, thus when N is small, they don’t
perform well enough but Our KEMI and baseline like Octopus are
better due to the usage of a good allocation strategy.

Third, Our model achieves the best results on both datasets
in terms of all the metrics, demonstrating the effectiveness and
consistency of our proposed KEMI model.

4.3 Ablation and Hyper-Parameter Study
In this section, we study the necessity of some key components and
an important hyper-parameter: the number of interests𝑚.
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Dianping Feed Dataset Microsoft News Dataset
Metrics@10 Metrics@50 Metrics@100 Metrics@10 Metrics@50 Metrics@100

Hit Rate Recall Hit Rate Recall Hit Rate Recall Hit Rate Recall Hit Rate Recall Hit Rate Recall

Most Popular 5.713 1.014 15.74 3.215 23.28 5.385 1.659 0.526 1.696 0.536 1.704 0.537
Youtube DNN 11.36 2.586 30.69 8.081 41.54 12.44 5.832 1.492 14.87 3.814 22.29 6.079

MIND 11.81 2.830 31.89 8.900 43.19 13.39 3.113 0.752 12.77 3.318 20.93 5.728
Comirec 11.44 2.742 31.47 8.905 42.27 13.28 3.753 0.941 13.57 3.489 22.22 6.160
Octopus 11.49 2.768 31.99 8.913 42.89 13.12 5.845 1.543 15.60 3.616 23.90 6.198
MIMN 11.28 2.601 30.98 8.426 42.35 12.90 5.032 1.454 14.31 3.732 21.50 5.833

KEMI 12.19 2.889 33.50 8.976 46.47 13.81 6.198 1.808 16.58 4.088 26.35 6.621

Table 4: Model performance on two datasets. Bolded numbers are the best performance of each column. The results are reported
in percentage (%).
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Figure 3: Ablation study on removing the constrained interest loss, the overall interest weight or the fine-grained interest
weight on two datasets.

News Title Knowledge EntityInterests

Interest 1

Interest 2

Interest 3

News1: Lloyd: Coming off bench at World Cup "rock 
bottom of my entire career"
News2: Premier League player Power Rankings
News3: Lukaku brace at Bologna fires Inter top, Roma 
beat Napoli to go third

News1: Why macOS Catalina is breaking so many 
apps, and what to do about it
News2: Pixel 4 and 4 XL hands-on: Google ditches 
fingerprint scanner for face unlock
News3: Xbox's latest safety feature lets you filter 
out offensive trash talk

News1: Amazon CEO Jeff Bezos is no longer the 
richest person in the world
News2: Starbucks gives $10 million to help boost 
small business in Chicago's neighborhoods
News3: McDermott chief financial officer resigns 
following $1.9 billion loss

Premier League
Cristiano Ronaldo
World Cup 
FC Barcelona

CFO
stock
SoftBank
credict card

Xbox
macOS Catalina
Pixel 4
Apple

Figure 4: An example of news and knowledge entities related
to the different interest channels of our KEMI model

4.3.1 Ablation Study. We study the necessity of key components,
including the constrained interest loss (marked as w/o KL loss),
the overall interest weight (marked as w/o item interest), and the
fine-grained interest weight (marked as w/o entity interest). From
figure 3 we can observe that removing any of these components will
lead to a performance drop, which demonstrates the effectiveness
of these components. Removing the overall interest weight causes
the biggest performance drop, showing that the item itself contains
the most user interest information.Removing knowledge informa-
tion(w/o entity interest) will also lead to a big performance drop,

this indicates with the help of knowledge entities, we can make
a more comprehensive understanding of user interests. The con-
strained interest loss can help the overall interest and fine-grained
interest learn better, so it is also helpful for the model performance.

4.3.2 Number of Interests. Table 5 illustrates the performance of
our framework when the hyper-parameter𝑚 changes.𝑚 = 1 means
we use a single vector to model user interests. The results show
that using multiple interests achieves better results than using
a single interest, thus illustrating the necessity of multi-interest
modeling. We also observe that our model achieves the best results
on the dianping feed dataset when𝑚 = 10 and on the news dataset
when𝑚 = 20. We believe this is due to the relatively more diverse
content of news, so more interest channels are needed to model
user interests.

4.4 Case Study
To demonstrate the interpretability of our model on multi-interest
candidate generation, we present some real examples on the news
dataset. Different from the previous multi-interest models, we can
explain not only at the item level but also at the entity level. As
shown in the example in Figure 4, we select three interest channels
with corresponding news and representative entities. Take interest
1 as an example, from the level of news, we can know that this is
probably a sports-related interest. From the representative entity,
we can more intuitively know that this is an interest in soccer.
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Microsoft News Dianping Feed
N=10 N=50 N=100 N=10 N=50 N=100

m=1 HR@N 5.806 14.13 22.43 11.21 30.40 41.96
Recall@N 1.518 3.725 6.002 2.667 8.142 12.48

m=5 HR@N 5.892 14.99 23.20 11.83 32.19 44.80
Recall@N 1.653 3.816 6.190 2.878 8.951 13.38

m=10 HR@N 6.062 15.81 25.47 12.19 33.50 46.47
Recall@N 1.775 3.901 6.472 2.889 8.976 13.81

m=20 HR@N 6.198 16.58 26.35 12.02 33.10 46.01
Recall@N 1.808 4.088 6.621 2.841 8.953 13.46

m=30 HR@N 6.134 16.46 26.48 11.60 32.18 44.63
Recall@N 1.769 3.957 6.608 2.841 8.880 43.69

Table 5: Model performance w.r.t. different number of in-
terests, the results are reported in percentage (%). Bolded
numbers are the best performance.

# users # items #interactions
2,659,562 2,123,510 160,409,918

Table 6: Statistics of the industrial large dataset

With the help of knowledge graphs, we associate user interests
with entities, making our explanations more straightforward and
convincing.

4.5 Industrial Large Dataset Results
We also conduct experiments on an industrial large dataset. We
collect all the users’ behavior logs of 6 weeks from July 26, 2021
to September 05, 2021 of Shanghai in our online system. The sta-
tistics of the industrial large dataset are shown in Table 6. We
conduct offline experiments between our framework and all the
state-of-the-art recommendation methods. The experimental re-
sults demonstrate that our KEMI model can improve Recall@100
and HR@100 with 3.73% and 6.25% compared to the best baseline
results respectively.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose KEMI, a novel multi-channel model which
comprehensively captures users’ diverse interests with the help of
knowledge graphs for candidate generation tasks in recommender
systems. We propose to use HGNNs to learn the unified repre-
sentations of items and knowledge entities with multiple types of
relations, and propose a novel dual memory network structure to
learn the overall and fine-grained interests from users’ behavior
sequences. Extensive experimental studies are carried out with both
industrial and publicly available datasets, where KEMI achieves
substantial improvements over state-of-the-art baseline methods,
meanwhile, our method can provide a good explanation for each
interest channel with the help of knowledge graphs. In the future,
we will study how to leverage knowledge graphs to adaptively
assign interest channels to different users, and study the effect of
knowledge graphs enhanced multi-interest candidate generation on
improving the diversity and satisfaction of users in recommender
systems.
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